Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Section: New Results

Efficient and effective sparse tensor reordering

This paper formalizes the problem of reordering a sparse tensor to improve the spatial and temporal locality of operations with it, and proposes two reordering algorithms for this problem, which we call BFS-MCS and Lexi-Order. The BFS-MCS method is a Breadth First Search (BFS)-like heuristic approach based on the maximum cardinality search family; Lexi-Order is an extension of doubly lexical ordering of matrices to tensors. We show the effects of these schemes within the context of a widely used tensor computation, the Candecomp/Parafac decomposition (CPD), when storing the tensor in three previously proposed sparse tensor formats: coordinate (COO), compressed sparse fiber (CSF), and hierarchical coordinate (HiCOO). A new partition-based superblock scheduling is also proposed for HiCOO format to improve load balance. On modern multicore CPUs, we show Lexi-Order obtains up to 4.14× speedup on sequential HiCOO-Mttkrp and 11.88× speedup on its parallel counterpart. The performance of COO-and CSF-based Mttkrps also improves. Our two reordering methods are more effective than state-of-the-art approaches.

This work appears in the proceedings of ICS2019 [21].